оглавление

Введение	13
Глава 1. Основные методы расчета распространения волн через многослойные структуры	19
1.1. Общий обзор различных методов расчета	19
1.1.1. Метод прямой	19
1.1.2. Метод усреднения	20
1.1.3. Метод характеристической матрицы	21
1.1.4. Метод импеданса	21
1.1.5. Метод исключения	22
1.1.6. Метод пошагового алгоритма	22
1.1.7. Метод переотражений	23
1.2. Сравнительные характеристики различных методов расчета	23
1.2.1. Метод прямой (параллельный)	23
1.2.2. Метод усреднения (параллельный)	24
1.2.3. Метод матрицы (последовательный)	24
1.2.4. Метод импеданса (последовательный)	24
1.2.5. Метод исключения (последовательный)	25
1.2.6. Метод пошагового алгоритма (последовательный)	25
1.2.7. Метод переотражений (параллельный)	26
Выводы по главе 1	26
Глава 2. Укороченный метод пошагового алгоритма	27
2.1. Получение амплитуд распространяющихся волн прямым методом	27
2.1.1. Две среды, разделенные одной границей	28
2.1.2. Три среды, разделенные двумя границами	29
2.1.3. Четыре среды, разделенные тремя границами	31
2.1.4. Пять сред, разделенные четырьмя границами	33
2.2. Последовательное вычисление детерминантов	35
2.2.1. Нулевые детерминанты	35
2.2.2. Первые детерминанты	37
2.3. Математический аппарат укороченного алгоритма	40
2.3.1. Геометрия задачи	40
2.3.2. Решение прямым методом	41
2.3.3. Последовательные действия алгоритма	42
2.3.4. Решения для трех, четырех и пяти сред	43
2.4. Схема реализации алгоритма на ЭВМ	45

2.5. Применение укороченного алгоритма для вычисления амплитуд	16
	40
2.5.2. Интерференционное отражение волнового числа	40
лействии встречной волны	49
2.5.3. Изменение фазы встречной волны	49
2.5.4. Изменение параметров структуры	50
26 Применение алгоритма для исследования свойств неоднородной	
среды.	53
2.6.1. Общий характер зависимостей амплитуд внешних волн	
от числа слоев структуры	53
2.6.2. Критическое число ступенек при различном интервале	55
	57
2.6.4. Осниллении отражения при малом изменении длины волны 2.6.4. Осниллении отражения при малой длине волны	58
2.6.1. Осцилляции огражения при малой длине волны	00
ближения	60
97 Критерий выбора оптимального нисла ступенек при ступениатом	
приближении неолноролной среды	63
28 Обобщение на случай электромагнитных волн	64
Выводы по главе 2	65
Глава 3. Полный метол пошагового алгоритма	67
31 Математический аппарат полного апгоритма	67
	68
3.1.2 Схема полного алгоритма	68
313 Летерминанты для трех четырех и пяти сред	71
3.9 Суема реализации алгоритма на ЭВМ	74
	11
5.5. Применение алгоритма для исследования волн в структуре с ли- цейным изменением волнового цисла	74
3.3.1. Лицейцое царастацие волнового цисла	74
3.3.2 Роль степени нарастания волнового числа	78
3.3.3. Линейное убывание волнового числа	80
3.3.4. Влияние падения волны встречного направления	82
34 Локальная неолноролность структуры	86
35 Роль потерь энергии в структуре	89
2.6 Den	01
5.6. Роль геометрической длины структуры	91
3.7. Распространение волн через многослойные структуры с неодно-	0.2
	95
5.7.1. Поворот графика функции относительно оси симметрии	03
372 Поворот графика степенной функции	95 95
373 Построение ступенчатой зависимости волнового числа	50
от координаты	96
3.7.4. Отражение и прохождение волн через многослойные	
структуры с неоднородностью степенного вида	98
Выводы по главе З	100

Глава 4. Применение метода алгоритма для расчета распростра- нения одномерных волн через периодические структуры	104
4.1. Общая геометрия структуры с периодической неоднородностью	104
4.2. Амплитуды волн в крайних слоях структуры	106
4.2.1. Общая геометрия структуры	106
4.2.2. Изменение среднего волнового числа	106
4.2.3. Амплитуды волн внутри полос непропускания	106
4.3. Амплитуды волн в различных слоях структуры	108
4.3.1. Изменение номера слоя структуры	108
4.3.2. Изменение среднего волнового числа	110
4.4. Неоднородность пилообразного вида	112
4.4.1. Общая геометрия пилообразной неоднородности	112
4.4.2. Амплитуды волн в различных слоях структуры	114
4.4.3. Сопоставление со случаем меандровои неоднородности	114
4.5. Пространственная модуляция амплитуды	115
4.5.1. Условия существования пространственной модуляции	110
4.5.2. Основные режимы пространственной модуляции	193
4.5.4. Линамика переходов между режимами	120
4.5.5. Структура областей существования режимов по волновому	
числу	127
4.6. Отражающие свойства структуры	127
4.7. Пропускающие свойства структуры	130
4.7.1. Замечание о частотных свойствах структур с периодиче-	
скими неоднородностями	130
Выводы по главе 4	132
Глава 5. Применение метода алгоритма для расчета распростра-	
нения электромагнитных волн через периодические структуры	134
5.1. Геометрия задачи	134
5.2. Обобщение постановки задачи на случай электромагнитных	105
ВОЛН	135
5.2.1. Введение электродинамических параметров	135
срелы	136
5.2.3. Индексация волн прямого и обратного направлений	137
5.2.4. Особенности геометрии задачи для случая электромагнит-	
ных волн	138
5.3. Схема расчета методом пошагового алгоритма	139
5.3.1. Общая схема пошагового алгоритма	139
5.3.2. Аналитическая реализация алгоритма	140
5.4. Амплитуды волн в крайних слоях структуры	142
5.5. Изменение числа барьеров	145
5.5.1. Минимальные значения амплитуды	145
5.5.2. Максимальные значения амплитуды	148

5.6. Распределение амплитуд в слоях при большой вариации пара-	
метров	149
5.6.1. Переход между распределениями амплитуды	152
5.7. Слабая и сильная неоднородности.	155
5.8. Изменение соотношения проницаемостей слоев	158
Выводы по главе 5	159
Глава 6. Применение метода алгоритма для расчета распростра- нения электромагнитных волн в среде с магнитными перио- лическими неолноролностями	162
6.1 Геометрия залачи	162
6.2 Электромарнитина родин в марнитиой среде	163
6.3. Сиздариза магиитиза процицаемость	163
6.3.1. Частотные характеристики при матой проницаемости	163
6.3.2. Распреледение амплитул в слоях при большой вариации	100
параметров	164
6.4. Тензорная магнитная проницаемость	167
6.4.1. Волна в среде с тензорными параметрами	167
6.4.2. Ориентация волнового вектора по нормали к оси гирот-	
ропии	169
6.4.3. Поля гиромагнитной волны	170
6.4.4. Полярная система координат	171
6.4.5. Импедансы и адмиттансы	172
6.5. Падение гиромагнитной волны на границу раздела двух сред	173
6.6. Тензор магнитной проницаемости	176
6.6.2. Парактерные частоты	170
6.6.3 The supergram and an another a set walked	179
6.6.4. Затухание слабое	180
6.6.5. Затухание среднее	182
6.6.6. Затухание сильное	184
6.7. Распределение амплитуд	186
6.8. Баланс потоков энергии	188
69 Отражение и прохожление в широком лиапазоне частот	191
Выволы по главе 6	194
	101
Глава 7. Применение метода алгоритма для расчета распростра-	
нения волн в среде с периодическими неоднородностями, об-	
ладающими диссипацией	197
7.1. Геометрия задачи	197
7.2. Распределение амплитуд для одномерной волны	198
7.2.1. Роль комплексного характера волнового числа	201
7.2.2. Отражающие и пропускающие свойства структуры для од- номерной волны	202

7.3. Электромагнитная волна в проводящей среде	204
7.3.1. Волновое число и адмиттанс в присутствии проводимости	206
7.3.2. Характер проникновения волны в металл	209
7.4. Распределение амплитуд для электромагнитной волны	209
7.4.1. Сочетание различных видов распределений	214
7.5. Сравнение эффективности диссипации	215
7.6. Отражающие и пропускающие свойства структуры для электро-	
Магнитной волны	218
7.6.1. Диссипативный резонанс	222
7.0.2. Аномалия оаланса потоков энергии	222
7.7.1. Воспределение эмплитит при металлической проводимости	224 994
7.7.9. Отражающие и пропускающие свойства структуры при ме-	224
таллической проводимости	227
Выводы по главе 7	230
а ва волнати и электромаг- нитных волн	233
81 Волновые уравнения для проводящей среды	233
8.1.1. Гармоническая зависимость от времени	235
8.1.2. Замечание о комплексных волновых числах	236
8.1.3. Комплексное волновое число при гармонической зависимо-	
сти от времени	238
8.1.4. Разделение переменных	238
8.2. Одномерная волна в среде с затуханием	239
8.2.1. Амплитуда волны спадает в пространстве	240
8.2.2. Амплитуда волны спадает во времени	241
6.2.5. Физическая реализация полученных решении	242
8.3. Возможные виды решения для волны, спадающей в пространстве	243
8.3.2. Тригонометрицеское решение	243 945
8.4. Decipocompanyulua anextromaciumuoù ponulu uepez mauuuv pezne.	240
ляющую две среды.	246
8.4.1. Общая геометрия задачи	247
8.4.2. Решения волновых уравнений	247
8.4.3. Коэффициенты отражения и прохождения по полям	250
8.4.4. Коэффициенты отражения и прохождения по энергиям	251
8.5. Распространение электромагнитной волны через две границы,	050
разделяющие три среды	252
0.0.1. Общая теометрия задачи	252 253
853 Поля распространяющихся волн	254
8.5.4. Коэффициенты отражения и прохождения по электриче-	201
скому полю	255
Выводы по главе 8	256

7

Глава 9. Общие энергетические характеристики распространяю-	258
	200
9.1. Общие определения энергетических характеристик распростра- няющейся волны	258
9.1.1. Объемная плотность энергии волны	258
9.1.2. Поток энергии волны	259
9.1.3. Плотность потока энергии волны	261
9.1.4. Вектор Умова-Пойнтинга	262
9.2. Энергетические характеристики волны в струне	262
9.3. Энергетические параметры электромагнитной волны	265
9.3.1. Общие соотношения для электромагнитной волны	265
9.3.2. Объемная плотность энергии волны	266
9.3.3. Усредненная по времени объемная плотность энергии вол-	967
	201
9.5.4. Поток энергии волны	200
9.3.5. Плотность потока энергии волны	200
9.3.6. Усредненная по времени плотность потока энергии волны	269
9.4. Вектор Пойнтинга для электромагнитной волны	270
9.4.1. Получение выражения для вектора Пойнтинга из уравне- ний электролинамики	270
9.4.2. Соотношение полученного выражения для вектора Пойн-	2.0
тинга с его общим определением	273
9.4.3. Усредненный по времени вектор Пойнтинга	274
9.4.4. Вектор Пойнтинга при экспоненциальном решении	274
9.5. Общие свойства плотности потока энергии распространяющихся	
ВОЛН	276
9.5.1. Замечание о размерности	278
9.6. Общие правила работы с потоками энергии электромагнитной	
ВОЛНЫ	279
9.6.1. Некоторые дополнительные замечания	281
Выводы по главе 9	281
Глава 10. Эергетические характеристики распространения волны	
через границы раздела сред с комплексными параметрами	285
10.1. Общий обзор работ по энергетическим характеристикам волн	
в многослойных структурах	285
10.2. Энергетические параметры — традиционные формы определения	288
10.2.1. Одна граница раздела сред	288
10.2.2. Две границы раздела сред	293
10.3. Баланс энергии на границах разлела сред	294
10.3.1 Баланс на одной границе раздела сред	295
10.3.9 Баланс на одной граница раздела сред	200
10.0.2. Балапс па двух грапицах раздела сред	290
10.4. энергетические коэффициенты, характеризующие распростране-	200
ние одномерной волны через две границы раздела трех сред	300
10.4.1. геометрия задачи и амплитуда распространяющихся	300
волн	200

10.4.2. Потоки энергии распространяющихся волн	302
10.4.3. Энергетические коэффициенты (аналитические выражения)	303
10.4.4. Совпадение конечных точек структуры с границами раз-	305
10.4.5. Энергетические коэффициенты при различных парамет-	305
10.4.6. Влияние диссипации во второй среде	307
10.4.7. Произвольные начальная и конечная точки распростране- ния волн	309
10.5. Основные правила работы с потоками энергии волн, распростра-	311
	011
10.5.1. Общая постановка задачи	311
10.5.2. Нахождение амплитуд волн	311
10.5.3. Нахожление потоков энергии	312
	319
	012
10.5.5. Баланс энергии на участке, ограниченном двумя точеч-	010
ными границами	312
10.5.6. Баланс энергии на структуре, содержащей несколько од-	
нородных участков, разделенных точечными границами	313
Выводы по главе 10	313
встречных волн через многослойную структуру	315
11.1. Баланс потоков энергии для встречных волн в структуре с про-	
11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315
11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316 317
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316 317
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316 317 319
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316 317 319
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	 315 316 317 319 321
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316 317 319 321
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	 315 316 317 319 321 321 321
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	 315 316 317 319 321 321 322
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	 315 316 317 319 321 321 322 325
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	 315 316 317 319 321 321 322 325
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	 315 316 317 319 321 322 325 327
 11.1. Баланс потоков энергии для встречных волн в структуре с произвольным числом слоев	 315 316 317 319 321 322 325 327 323
 11.1. Баланс потоков энергии для встречных волн в структуре с произвольным числом слоев	 315 316 317 319 321 322 325 327 333
 11.1. Баланс потоков энергии для встречных волн в структуре с произвольным числом слоев	315 316 317 319 321 322 325 325 327 333
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316 317 319 321 322 325 327 333
 11.1. Баланс потоков энергии для встречных волн в структуре с произвольным числом слоев	315 316 317 319 321 321 322 325 327 333 334
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	 315 316 317 319 321 322 325 327 333 334
 11.1. Баланс потоков энергии для встречных волн в структуре с произвольным числом слоев	315 316 317 319 321 322 325 325 327 333 334
 11.1. Баланс потоков энергии для встречных волн в структуре с произвольным числом слоев	315 316 317 319 321 322 325 327 333 334 334
 11.1. Баланс потоков энергии для встречных волн в структуре с про- извольным числом слоев	315 316 317 319 321 322 325 327 333 334 334 334

12.4. Традиционные энергетические параметры распространяющихся волн	338
12.5. Традиционные энергетические характеристики при изменении	330
1251 Лиэлектрическая пластина межлу лвух лиэлектриче-	000
ских сред	339
12.5.2. Диэлектрическая пластина между двух проводящих сред	339
12.6. Комплексные энергетические параметры распространяющихся	
ВОЛН	340
12.7. Энергетические характеристики при изменении параметров сред 12.7.1. Диэлектрическая пластина между двух диэлектриче-	342 342
12.7.2. Лиэлектрическая пластина между двух проволящих сред	343
12.7.3. Проводящая пластина между двух проводящих сред	344
12.8. Замечание о возможном развитии исследований	345
Выволы по главе 12	346
Ілава 13. Интерференционный поток энергии распространяю-	348
13.1 История понятия интерфоронционного потока	348
	240
13.2. Общие положения о потоке энергии	349
13.2.2. Поток энергии в непоглощающей среде	349
13.2.3. Баланс энергии для непоглошающих сред	350
13.2.4. Баланс энергии для поглощающих сред	351
13.3. Механизмы формирования интерференционного потока	351
13.3.1. Механизм стоячих волн	351
13.3.2. Механизм фиктивного слоя	353
13.3.3. Дополнительное замечание	355
13.4. Потоки энергии при интерференции независимых волн	355
13.4.1. Замечание о дальнейшем изложении	356
13.5. Общая схема формирования интерференционного потока	356
13.5.1. Традиционное определение интерференционного потока	357
13.5.2. Неадекватность традиционного представления реаль-	358
13.5.3. Определение потока энергии для одномерной задачи	358
13.5.4. Образование интерференционного потока в области пере-	000
крытия двух волновых пучков	359
13.5.5. Корректное рассмотрение потока энергии в области пере-	
крытия	361
13.5.6. Независимость потоков энергии в области перекрытия	363
и пекорректность понятия «интерференционного потока» 1357 Потоки энергии электромагнитных волн	363
13.6. Законы сохранения в залаче о палении волны на границу разле-	500
ла сред.	363

13.7. Механическая аналогия задачи о падении волны на границу 13.7.1. Математический аппарат обеих задач	365 366
13.7.2. Эквивалентность и различие законов сохранения для осе- их задач	367
13.7.5. Качественная картина превышения в задаче о распростра- нении волн	368
нии шаров	369
Выводы по главе 13	369
Глава 14. Применение метода конечных разностей для расчета распространения волн в многослойной структуре	373
	373
14.1. Уравнения электродинамики в конечных разностях	375
14.1.2. Замечание о представлении производных в виде конеч- ных разностей	376
14.1.3. Последовательные выражения для электрического и маг- нитного полей	377
14.2. Сетка и шаблон для одномерной задачи	378
14.2.1. Сравнение шаблона с разностными уравнениями	382
14.3. Число Куранта и импеданс	383
14.4. Полные конечно-разностные представления полей	384
14.4.1. Замечание о других возможных вариантах шаблона	384
14.5. Представление задачи Даламбера в конечных разностях	386
14.6. Схема машинного расчета задачи Даламбера	388
14.7. Графическое представлении решения задачи Даламбера	390
14.7.1. Схема представления импульса	390
ламбера	391
14.7.3. Подавление отражения от края сетки	394
14.8. Формирование вторичного поля от импульсов различной формы	394
14.8.1. Импульс в виде равнобедренного треугольника	395
14.8.2. Импульс произвольной формы	397
14.8.3. Единичный импульс	399
14.9. Качественная картина задания единичного импульса	400
14.10. Компенсация вторичных импульсов магнитным полем	402
14.10.1. Единое расположение импульсов	402
14.10.2. Упреждающее расположение магнитного импульса	402
14.10.3. Заключительное замечание	403
14.11. Интерпретация компенсации вторичных импульсов на сетке	405 405
14.11.1. Отсутствие компенсации	405 406
14.11.2. Компенсация при едином расположении импульсов 14.11.3. Компенсация при упрежлающем расположении мариит-	400
ного импульса	407

14.12. Универсальный характер компенсации	408
14.12.1. Развитие вторичных импульсов без компенсации	409
14.12.2. Введение компенсирующих импульсов	410
14.13. Некоторые дополнительные свойства пилообразных структур	411
14.13.1. Распространение волн в обе стороны	412
14.13.2. Аддитивность пилообразных структур	413
14.14. Представление задачи Даламбера на плоскости координата-	
время	414
14.14.1. Схема машинного расчета водопада	414
14.14.2. Водопад для задачи Даламбера без компенсации	415
14.15. Водопад для единичного импульса	417
14.15.1. Отсутствие компенсации	417
14.15.2. Введение компенсации	419
14.15.3. Единое расположение импульсов	419
14.15.4. Упреждающее расположение магнитного импульса	419
14.15.5. Формирование двух расходящихся лучей	420
14.16. Распространение волны через одну границу, разделяющую две	
среды	422
14.16.1. Коэффициенты отражения и прохождения	424
14.16.2. Формирование дополнительных лучей	425
14.16.3. Заключительное замечание	426
Выводы по главе 14	427
Литература	431